Validation of the UFS Bonner Sphere Spectrometer and Monte Carlo Methods at the CERN-EU high energy Reference Field (CERF)

T. Brall1, M. Dommert2, W. Rühm1, S. Trinkl3, M. Wielunski1, V. Mares1

1Helmholtz Zentrum München Institute of Radiation Protection, Neuherberg, Germany
2Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
3Federal Office for Radiation Protection (BFS), Neuherberg, Germany

VOA Symposium 2018, Grenoble, 14th March
Motivation

• CERF provides a high energy reference neutron field similar to secondary cosmic ray neutrons
 • CERF provides reference neutron spectra, calculated with FLUKA

• Well defined geometry and beam intensity

• Quality assurance of measurements and Monte Carlo methods used at UFS
Cosmic Radiation in the Earth’s Atmosphere vs. Simulation at CERF

- Primary cosmic rays
 - galactic and solar component
 - about 85% p, 12% α
- Interact with atmosphere
- Secondary cosmic particles are produced (e.g.: p, n, π⁺⁻⁻⁻, μ⁺⁻⁻⁻, e⁺⁻⁻⁻, γ)

- High energy (120 GeV/c) hadron beam (about 2/3 π⁺, 1/3 p) hits copper Target
- Behind 80 cm lateral concrete shielding secondary cosmic ray neutron field is simulated

Cosmic Radiation in the Earth’s Atmosphere vs. Simulation at CERF

- Primary cosmic rays
 - galactic and solar component
 about 85 % p, 12 % α
- Interact with atmosphere
- Secondary cosmic particles are produced (e.g.: p, n, π⁺⁻/⁰, μ⁺⁻, e⁺⁻, γ)

- High energy (120 GeV/c) hadron beam (about 2/3 π⁺, 1/3 p) hits copper Target
- Behind 80 cm lateral concrete shielding secondary cosmic ray neutron field is simulated

The CERF Facility

- Beam intensity is monitored with a High Precision Ionisation Chamber (PIC)
- 1 PIC-cnt=22,000 incoming particles (+/- 10 %)
MC Simulation

- Using GEANT4 with two Physicslists:
 - QGSP_BERT_HP & QGSP_BIC_HP
 - QGSP: Quark gluon string model for HE interactions of p, n, π, K
 - HP: High precision neutron package for \(E_n < 20 \) MeV
 - BERT: G4 Bertini cascade for primary p, n, π and K below 10 GeV
 - BIC: G4 Binary cascade for primary p & n for energies below 10 GeV
- 3.2 m primary particles
 - 2m π⁺, 1m p, 0.2m K⁺
 - Normalized to 61% π⁺, 35% p, 4% K⁺
 - 120 GeV/c
- Reference calculated with FLUKA¹
 - Rebinned to 10 bins per decade

Spectrometry of Neutrons

Extended Range Bonner Sphere Spectrometer (ERBSS)

• spherical ^3He proportional counters (SP9, Centronic Ltd)
• 1 bare detector for thermal (low energy) neutrons
• 15 PE moderation Spheres (2.5“-15“)
• 2 9” PE Spheres with additional lead shell (0.5“ & 1”) for high energy neutrons

[Graph and images of detectors]
Results: Top of Concrete Pos. 06 - Fluence

Note: FLUKA spectra rebinned to 10 bins per decade

Fluence Φ [cm$^{-2}$ Pri$^{-1}$]

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>E<0.4eV</th>
<th>0.4eV<E<10</th>
<th>100keV<E<20MeV</th>
<th>E>20MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4-BIC</td>
<td>5.28E−5</td>
<td>1.07E−5</td>
<td>6.02E−6</td>
<td>1.42E−5</td>
<td>2.18E−5</td>
</tr>
<tr>
<td>G4-BERT</td>
<td>7.42E−5</td>
<td>1.58E−5</td>
<td>9.23E−6</td>
<td>2.07E−5</td>
<td>2.85E−5</td>
</tr>
<tr>
<td>FLUKA</td>
<td>4.67E−5</td>
<td>6.19E−6</td>
<td>6.09E−6</td>
<td>1.37E−5</td>
<td>2.07E−5</td>
</tr>
<tr>
<td>BSS-BIC</td>
<td>6.20E−5</td>
<td>9.50E−6</td>
<td>9.39E−6</td>
<td>1.86E−5</td>
<td>2.45E−5</td>
</tr>
<tr>
<td>BSS-BERT</td>
<td>6.22E−5</td>
<td>9.51E−6</td>
<td>9.44E−6</td>
<td>1.85E−5</td>
<td>2.47E−5</td>
</tr>
<tr>
<td>BSS-FLUKA</td>
<td>6.13E−5</td>
<td>8.87E−6</td>
<td>9.82E−6</td>
<td>1.87E−5</td>
<td>2.39E−5</td>
</tr>
</tbody>
</table>

FluKa reference spectra from: [http://tis-div-rp-cerf.web.cern.ch/tis-div-rp-cerf/] Note: FLUKA spectra rebinned to 10 bins per decade
Results: Top of Concrete Pos. 06 - H*(10)

Note: FLUKA spectra rebinned to 10 bins per decade

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>E<0.4eV</th>
<th>0.4eV<E<10</th>
<th>100keV<E<20MeV</th>
<th>E>20MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4-BIC</td>
<td>293</td>
<td>2.7</td>
<td>2.2</td>
<td>124</td>
<td>164</td>
</tr>
<tr>
<td>G4-BERT</td>
<td>403</td>
<td>4</td>
<td>3.3</td>
<td>180</td>
<td>216</td>
</tr>
<tr>
<td>FLUKA</td>
<td>282</td>
<td>1.6</td>
<td>2.1</td>
<td>120</td>
<td>158</td>
</tr>
<tr>
<td>BSS-BIC</td>
<td>339</td>
<td>2.4</td>
<td>3.6</td>
<td>155</td>
<td>178</td>
</tr>
<tr>
<td>BSS-BERT</td>
<td>340</td>
<td>2.4</td>
<td>3.5</td>
<td>155</td>
<td>179</td>
</tr>
<tr>
<td>BSS-FLUKA</td>
<td>337</td>
<td>2.2</td>
<td>3.5</td>
<td>158</td>
<td>174</td>
</tr>
</tbody>
</table>

Results: Top of Iron Pos. 06 - Fluence

Fluence Φ [cm$^{-2}$ Pri$^{-1}$] :

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>E<0.4eV</th>
<th>0.4eV<E<10</th>
<th>100keV<E<20MeV</th>
<th>E>20MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4-BIC</td>
<td>4.52E-4</td>
<td>1.24E-6</td>
<td>1.32E-4</td>
<td>2.99E-4</td>
<td>1.97E-5</td>
</tr>
<tr>
<td>G4-BERT</td>
<td>5.97E-4</td>
<td>1.64E-6</td>
<td>1.81E-4</td>
<td>3.87E-4</td>
<td>2.70E-5</td>
</tr>
<tr>
<td>FLUKA</td>
<td>3.85E-4</td>
<td>1.92E-6</td>
<td>1.42E-4</td>
<td>2.19E-4</td>
<td>2.17E-5</td>
</tr>
<tr>
<td>BSS-BIC</td>
<td>5.43E-4</td>
<td>7.43E-6</td>
<td>2.01E-4</td>
<td>3.10E-4</td>
<td>2.59E-5</td>
</tr>
<tr>
<td>BSS-BERT</td>
<td>5.44E-4</td>
<td>7.30E-6</td>
<td>2.02E-4</td>
<td>3.08E-4</td>
<td>2.60E-5</td>
</tr>
<tr>
<td>BSS-FLUKA</td>
<td>5.42E-4</td>
<td>5.34E-6</td>
<td>2.17E-4</td>
<td>2.94E-4</td>
<td>2.55E-5</td>
</tr>
</tbody>
</table>

Note: FLUKA spectra rebinned to 10 bins per decade.
Results: Top of Iron Pos. 06 - H*(10)

Note: FLUKA spectra rebinned to 10 bins per decade

<table>
<thead>
<tr>
<th>H*(10) [pSv PIC⁻¹]</th>
<th>Total</th>
<th>E<0.4eV</th>
<th>0.4eV<E<10</th>
<th>100keV<E<20MeV</th>
<th>E>20MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4-BIC</td>
<td>1998</td>
<td>0.3</td>
<td>89</td>
<td>1758</td>
<td>151</td>
</tr>
<tr>
<td>G4-BERT</td>
<td>2603</td>
<td>0.4</td>
<td>120</td>
<td>2274</td>
<td>209</td>
</tr>
<tr>
<td>FLUKA</td>
<td>1584</td>
<td>0.5</td>
<td>79</td>
<td>1338</td>
<td>166</td>
</tr>
<tr>
<td>BSS-BIC</td>
<td>2143</td>
<td>1.8</td>
<td>121</td>
<td>1826</td>
<td>195</td>
</tr>
<tr>
<td>BSS-BERT</td>
<td>2138</td>
<td>1.7</td>
<td>121</td>
<td>1821</td>
<td>194</td>
</tr>
<tr>
<td>BSS-FLUKA</td>
<td>2100</td>
<td>1.1</td>
<td>118</td>
<td>1800</td>
<td>182</td>
</tr>
</tbody>
</table>

Fluence Ratio of Simulations and Measurements

Ratio of MC Simulations & BSS Measurements to FLUKA Reference

Iron Top Shielding

Concrete Top Shielding
Fluence Ratio of Simulations and Measurements

Ratio of MC Simulations & BSS Measurements to FLUKA Reference

Ratio of MC Simulations to BSS Measurements

HelmholtzZentrum münchen
German Research Center for Environmental Health

HELMHOLTZ
RESEARCH FOR GRAND CHALLENGES
Conclusion

• The neutron field at CERF is eminently suitable for testing neutron detectors and Monte Carlo methods used at UFS

• It was shown that the ERBSS measurements are a proper method for validate MC calculations (influences of differences in input spectra eliminated after unfolding)

• No favourite of physicslist can be identified (QGSP_BERT_HP is overestimated and QGSP_BIC_HP is underestimated compared to ERBSS measurements)
 • Both models are currently in use for MC calculation of cosmic rays at UFS
Thank you for your attention!

S. Trink, M. Wielunski, T. Brall, M. Dommert, V. Mares

Contact: thomas.brall@helmholtz-muenchen.de