The **JOSEFINA*** project: air quality monitoring and simulation over Bavaria and Slovenia

Ehsan Khorsandi, Thilo Erbertseder, Frank Baier, Michael Bittner

13 March 2018 - Grenoble

Joint Bavarian - Slovenian Endeavor For Innovative Air Quality Analysis
The JOSEFINA* project: air quality monitoring and simulation over Bavaria and Slovenia

correspondence: ehsan.khorsandi@dlr.de

* Joint Bavarian - Slovenian Endeavor For Innovative Air Quality Analysis
Context

• Introduction (JOSEFINA project)
• Polyphemus/DLR model
• Comparisons to MODIS AOD and OMI TNO2
• Outlook and Summary
Objectives of JOSEFINA project

Monitoring and forecasting of aerosols in Bavaria and Slovenia based on Copernicus observations

Based on combining:

• in-situ measurements

• satellite-based observations

• numerical modeling
Motivation:

• Provide spatial information on pollution for policy makers and risk groups.

• Strengthening of satellite remote sensing for air quality monitoring in Bavaria.

• Surprisingly weak or missing decrease of monitored pollution at in-situ stations in Bavaria.

• Persistent biases in surface particulate matter in dispersion models.
Air pollutants’ circulation in the troposphere
...and how it is modelled by Polyphemus/DLR

Atmospheric condition

- WRF

Emissions

- Bio (Megan model)
 - Anthropogenic (TNO)

CORINE/LAI

- Land/canopy

Long distance transport

- Initial and Boundary condition

Polyphemus

- Transport
- Chemistry
- Aerosol

Dry and wet deposition

Gas concentration

Aerosol
Downscaling process of TNO EU scale emission data set

Original TNO (7km) → Area sources

VIIRS NOAA satellite-derived night light maps

Point sources

Traffic sources

OpenStreetMap roads paths

New emission map (2.2 km)
Reference run 2011: Polyphemus configuration

- WRF 3.5 (GSF driven), Skamarock et al., 2008
 - 10 km resolution for Central Europe

- Polyphemus (1.9) /DLR, Mallet et al., 2007; Bergemann CIC 2012
 - Central European mother nest (top at 9 km alt.)
 - two 2 km grid nests = Bavaria / Slowenia (top at 3 km alt.)

- TNO anthropogenic emission data, Kuenen et al., ACP, 2014
 - downscaled to 2.2 km grid

- Megan biogenic emissions, Guenther 2015

- SIREAM-SORGAM (sectoral) aerosol modules, Sportisse et al., 2006
Reference run 2011: observation data used

• Bavaria (LfU) in-situ station data via EEA online archive: NO2, SO2, PM10

• OMI TNO2, Boersma et al., 2007, 2011
 • monthly means, 1/8° gridded KNMI v2.0

• MODIS AOD, Levy et al., 2013
 • 10 x 10 km² DB/DT collection 6 product
Average tropospheric NO2 (year 2011)

Note: negative NO2 bias d.t. poor satellite coverage during polluted cold seasons?
Average AOD for year 2011

MODIS

Positive model bias, but polluted areas mainly covered
(* only observation days included)
Average AOD for year 2011

Strong South – North gradient
Average AOD for year 2011

Northern Germany: MODIS highest AOD near the coast areas
Influence of model aerosol type on AOD estimation in different heights
Influence of model aerosol type on AOD estimation in different heights

Strongest influence near/above PBL height.
Annual cycle strongly varies among species

PM (NO$_3$)

PM (API)
Summary

- First steps towards Bavarian-Slovenian spaced-based pollution monitoring

- Model results show that AOD estimation is highly influenced by aerosols in higher altitudes. Thus, vertical resolution is important to get comparisons right.

- Aerosol composition strongly varies during the year. Composition is important to verify and understand aerosol sources.
Thank You