Hardware and software infrastructure for long-term environmental monitoring at the IDPA-CNR Col Margherita atmospheric observatory

CNR-IDPA
CNR-ISAC

14 marzo 2018
Table of Contents

Col Margherita in the frame of GMOS
 Characteristics of the site
 2012-2015

Upgrade of the Station

Conclusions
From 2010 to 2015 (http://www.gmos.eu)

- global impact of Hg
- consequences for the environment and for the human health
- over 35 remote global monitoring stations
- oceanographic campaigns
- airplane studies
Falcade (BL)

- 2543 amsl
- 46.36683 N
- 11.79192 E

Ideal position, representative of the region

- absence of local influences for most of the year
- Föehn e Stau & cross-border transport
1 Col Margherita in GMOS Site

Period of activity

2 New infrastructure
Automation
Weather
Upgrade
Cloud
Web page
Remote Control
Data analysis

3 Conclusions

▶ http://colmargherita.dsa.unive.it
1 Col Margherita in GMOS Site
2 New infrastructure
 Automation
 Weather
 Upgrade
 Cloud
 Web page
 Remote Control
 Data analysis
3 Conclusions
Figure 1. Coverage and consistency (%), on monthly basis, of GEM data collected at some of the ongoing GMOS secondary stations during the period 2011–2015.
Table of Contents

Col Margherita in the frame of GMOS

Upgrade of the Station
 HW & SW development
 Weather sensors
 New sensors
 Cloud storage
 Real-time data
 OpenVPN for remote management
 Real-time data analysis

Conclusions
OpenWrt: Linux distribution for embedded devices
AWS sensors

- CR800 Series Datalogger
- 05108-45 Wind Speed & Direction Sensor
- CS215 Temperature & Relative Humidity Sensor
- CS106 Barometric Pressure Sensor
- 109 Temperature Probe
Collaboration between IDPA-CNR and ISAC-CNR start at the begin of 2017

- Ozone analyzer
- 4-Component Net Radiometer
- OPC
- nephelometer
- SR50A Sonic Ranging Sensor
- SI-111 Precision Infrared Radiometer
- CR1000 Campbell datalogger
- Aerosol bulk/wet deposition chemistry
Scalable system!
- Analog & Digital I/O
- ADC 16 bit
- Fast acquisition rate (~ 100 kHz)
1 Col Margherita in GMOS Site
2 New infrastructure Automation Weather Upgrade Cloud Web page Remote Control Data analysis
3 Conclusions

colmargherita@unive.it

Router 3G
Rete UMTS TIM
20 GB/month

Rclone (rsync)

Sharing
1 Col Margherita in GMOS

Period of activity

2 New infrastructure

Automation

Weather

Upgrade

Cloud

Web page

Remote Control

Data analysis

3 Conclusions
1 Col Margherita in GMOS
Site
Period of activity

2 New infrastructure
Automation
Weather
Upgrade
Cloud
Web page
Remote Control
Data analysis

3 Conclusions

colmargherita@unive.it
Server & backup
Rclone
Kiosk screen
Chromium directed to website
Virtual machine
http://colmargherita.dsa.unive.it/mrg
http://shiny.bo.isac.cnr.it:3838/idpa_cnr_colmargherita
1 Col Margherita in GMOS
Site
Period of activity
2 New infrastructure
Automation
Weather
Upgrade
Cloud
Web page
Remote Control
Data analysis
3 Conclusions

ANALYSIS
ITERATIVE / INTERACTIVE
SERVER & backup

OUTPUT
DATA
DOCUMENT

Ubuntu

REPRODUCIBLE
Guidelines

EBAS atmospheric database, Co-operating frameworks and projects include:

- Convention on Long-Range Transboundary Air Pollution - EMEP
- WMO Global Atmosphere Watch Programme
- Arctic Monitoring and Assessment Programme (AMAP)
- EU-project Aerosols, Clouds, and Trace gases Research InfraStructure Network (ACTRIS)
Table of Contents

1 Col Margherita in GMOS
 Site
 Period of activity
2 New infrastructure
 Automation
 Weather
 Upgrade
 Cloud
 Web page
 Remote Control
 Data analysis
3 Conclusions

Col Margherita in the frame of GMOS

Upgrade of the Station

Conclusions
Conclusions

- Remote control and management
- Real-time data available (open mode)
- Improve the infrastructure
- Automatic report
- Interoperability (e.g. Unive - Atmos. Aerosol, Arabba Avalanche Center - Snow metamorphism, ...)

1 Col Margherita in GMOS
 Site
 Period of activity
2 New infrastructure
 Automation
 Weather
 Upgrade
 Cloud
 Web page
 Remote Control
 Data analysis
3 Conclusions
Thank you!

federico.dallo@unive.it
Institute for the Dynamics of Environmental Processes (IDPA)
1 Col Margherita in GMOS Site
Period of activity
2 New infrastructure Automation Weather Upgrade Cloud Web page Remote Control Data analysis
3 Conclusions
1 Col Margherita in GMOS

2 New infrastructure
- Automation
- Weather
- Upgrade
- Cloud
- Web page
- Remote Control
- Data analysis

3 Conclusions
1 Col Margherita in GMOS Site

2 New infrastructure
Automation
Weather
Upgrade
Cloud
Web page
Remote Control
Data analysis

3 Conclusions

<table>
<thead>
<tr>
<th>TIME</th>
<th>T (°C)</th>
<th>WC (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-31</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>02-01</td>
<td>-30</td>
<td></td>
</tr>
<tr>
<td>02-02</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>02-03</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>02-04</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-05</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-06</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-07</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-08</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-09</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-13</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-14</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-16</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-17</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-19</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-21</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-22</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-23</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-26</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-27</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>02-28</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>03-01</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>03-02</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Air Temperature & Wind Chill

Air Temperature & Wind Chill

<table>
<thead>
<tr>
<th>TIME</th>
<th>T (°C)</th>
<th>WC (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-11-2017</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>21-12-2017</td>
<td>-30</td>
<td></td>
</tr>
<tr>
<td>21-01-2018</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>21-02-2018</td>
<td>-10</td>
<td></td>
</tr>
</tbody>
</table>

TIME

T (°C)

T

WC

Air Temperature & Wind Chill
<table>
<thead>
<tr>
<th>Period of activity</th>
<th>New infrastructure</th>
<th>Automation</th>
<th>Weather</th>
<th>Upgrade</th>
<th>Cloud</th>
<th>Web page</th>
<th>Remote Control</th>
<th>Data analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>nov−17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dic−17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gen−18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>feb−18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mar−18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Air Temperature

![Air Temperature Chart]

T (°C)

- November 2017 to February 2018
 - Average temperature varies significantly between months.
 - Highest temperature observed in February 2018.
 - Lowest temperature observed in November 2017.

Seasonal Analysis

- Winter months (November to February) show lower temperatures.
- Spring months (March) show a slight increase in temperatures.

Conclusion

The data analysis indicates that the temperature variations are largely due to seasonal changes rather than infrastructure or technology upgrades.

1. Col Margherita in GMOS
2. New infrastructure
3. Conclusions
1 Col Margherita in GMOS
Site
Period of activity

2 New infrastructure
Automation
Weather
Upgrade
Cloud
Web page
Remote Control
Data analysis

3 Conclusions

Wind Speed

![Box plot of wind speed](image)